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Abstract

This paper will explore the comparison of experimental (PFTIR) and simulation data obtained 
from assisted multipoint ground flares operating at high turndown. The flare assist is intended 
to encourage air entrainment for best combustion efficiency as well as reduce visible smoke. 
Operational envelopes of the assist to vent gas ratios are regulated on flare specific 
parameters. Experimental measurements have, however, measured low combustion efficiency 
even when operating within flare regulatory guidelines. This result is most likely due to the 
nonlinear nature of the flare combustion process and its response to regulatory constraints 
while being exposed to chaotic environmental conditions. Reliable and accurate methods for 
measuring, predicting and controlling flare performance across a wide range of conditions 
could offer significant environmental and economical advantages through better informed 
regulation, operation and ultimately high combustion efficiency.

	 PFTIR measurements represent a promising technology for remote flare sensing, as 
they may be placed safely away from the combustion zone and report critical species 
concentrations along a line of sight from which a combustion efficiency may be computed. 
However, environmental conditions, experimental error and bias significantly affect the 
measured combustion efficiency. Advanced simulation techniques have also offered a 
promising avenue for evaluating flare performance. However, these simulation tools may 
require large computational resources or require high level expertise to run and evaluate. While 
both the experimental and simulation approach have their limitations, the combination of the 
two data sources can offer significant insight into the flare’s performance and even offer real-
time feedback for operation and control. 

	 Here we will present simulation predictions of assisted multipoint ground flares 
combined with PFTIR measurements. We will also explore the possibility of using the model in 
concert with the PFTIR measurements to provide real-time, data informed predictions for flare 
operations. 
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Introduction

This work focuses on combining experimentally PFTIR measured data on multi-point ground 
flares (MPGF) with data from theory/modeling. While comparisons of measured data and 
simulated versions of the same physical system are the norm, the current approach reframes 
this process in an artificial intelligence, machine learning (ML) based approach. The intent of 
the reframing is to build data upon data, rather than the traditional approach of contrasting 
data with data. The current Bayesian Machine Learning (BML) approach views all data as 
potentially contributing to better informed decision making as long as the uncertainty of the 
data source can be quantified either rigorously or adopted from prior information of the system. 



By combining the data with help from the computer (machine), it is possible to have the data 
be cross-informed to allow inferences (learning) to occur. The approach also potentially 
reduces uncertainty in both the inputs and outputs values, benefitting both experimental and 
modeled data sources all within a sound mathematical theory. This approach differs from the 
more common Neural Network (NN) ML approaches because it requires a physical model of 
the system to generate data. Typical NNML approaches rely on collections of large amount of 
data with data fitting techniques for inference, while lacking a physical description of the 
system. The Bayesian based approach allows us to avoid some bias errors that naturally arise 
in NNML approaches because of the specific lack of a grounding physical model. Our 
approach also allows inference of quantities not easily measured (e.g., integrated combustion 
efficiency) which would be difficult or impossible to measure in the NNML approach because of 
the inclusion of the physical model.

	 The specific case study of this work focuses on the combustion efficiency (CE) of a 
John Zink SKEC steam-assisted flares at high turndown. Data used for this work were 
collected as part of Marathon Petroleum Company’s Flare Consent Decree (as recorded August 
30, 2012) at the John Zink Flare Facility on SKEC and LRGO flares. The high turndown 
scenario is particularly compelling because the ground flares spend most of the time in this 
state, only being fully utilized in process upset scenarios. This data identifies regions of low 
combustion efficiency in over-assisted scenarios and has characterized the DRE as a function 
of the net heating value in the combustion zone, which includes the steam flow rates. The data 
illustrate that the assist rate need be considered in determining operating parameters for these 
steam-assisted flares. For this work, the application of the BML method will be on test suite 
SN1 as termed in the reported data.




Data Sources


“A theory is something nobody believes, except the person who made it. An experiment is 
something everybody believes, except the person who made it.”  
-Albert Einstein 

Experimental Data 
The data of interest were provided by Clean Air in reported form entitled “Performance Test of 
Steam-Assisted and Pressure Assisted Ground Flare Burners with Passive FTIR – Garyville”, 
dated March 21, 2013. In the report, five groups of tests were described exploring the 
operating envelope of two assisted ground flares; the steam-assisted John Zink SKEC flare 
and the pressure-assisted John Zink LRGO flare. These five groups of tests were carried out at 
the John Zink flare test facility. In all tests, Passive Fourier transform Infrared (PFTIR) 
measurements were made to determine the combustion efficiency. Scenario measurements, 
such as wind speed, wind direction, fuel compositions, vent gas feed rates, etc. were reported.  

	 The PFTIR measurement theory is based on the fact that hot gasses emit and absorb a 
specific radiative signal, which the device captures within a narrow view angle of the subject. 
Different molecular species emit at specific wavelengths that act as a fingerprint of that specific 
molecule. The intensity of the signal allows one to determine the relative concentration of that 
species along the line of sight of the instrument. This allows the instrument to be placed at a 
safe distance from the combustion zone with an operator aiming the instrument behind the 
combustion zone to enable the measurements of the species of interest. The flare combustion 
efficiency is the quantity of interest and is computed as,


�       (1)
η =
ϕCO2

ϕCO2 + ϕCO + ϕHC



  


where �  is the flare combustion efficiency and �  is the concentration of each species along the 
line (� ). The PFTIR instrument captures the radiative signal of the downstream 
conditions of the flare combustion zone at a point, identifies the relative species concentrations 
of CO2, CO, and total HC (hydrocarbons), and computes the predicted value of . 

	 Errors or uncertainty in the PFTIR measurement of combustion efficiency, as in all 
measured data, can arise from a variety of sources. Here, we distinguish between instrument 
and measurement error and will use the terms “error” and “uncertainty” interchangeably. 
Instrument uncertainty is that error that is typically reported by the manufacturer. It is usually 
quantified in a well controlled experiment or calibration procedure in which the true value of the 
measured quantity is known to a good degree of accuracy. The instrument uncertainty is 
ascertained by repeated measurements and calibrations in the well controlled setting. As a 
result, instrument uncertainty is typically small. Measurement error, on the hand, is often the 
largest source of uncertainty. This error source results from variables beyond the control of the 
experimentalist or those that may have been overlooked. Overlooked variables are sometimes 
observed during the experimentation procedure at best, but often remain hidden from view, 
resulting in unknown and significant sources of variability in the observed result.

	 The PFTIR predictions of flare combustion efficiency has both instrument and 
measurement uncertainty. In this work, we have not quantified the instrument uncertainty. 
However, we recognize that the PFTIR instrument itself doesn’t measure concentrations 
directly (as described above). A physics based model (or instrument model, IM) is used to 
convert the signal to the final concentration measurements. In this process, the plume 
temperature must be inferred. Constants also must be calibrated regularly, which are used in 
the conversion of the signal to concentrations. The data are also filtered in the case of weak 
CO2 signals, with that data being rejected. In the case of low combustion efficiency (high HC 
and low CO2 signals), data were rejected because the IM would report zero combustion 
efficiency. With enough information and details of the PFTIR IM, the instrument uncertainty 
could be quantified. However, in this presentation we will assume that the mean of that 
uncertainty distribution and the standard deviation is small relative to the measurement 
uncertainty. 

	 Environmental challenges pose the biggest challenge for the measurement uncertainty. 
These uncontrolled variables require the PFTIR operator adjust the aim of the instrument so 
that it ideally captures the downstream spectral signal one flame length downstream from the 
combustion zone. This is not always possible given that wind shifts continuously throughout 
the tests. Additionally, the point-wise positioning in the downstream combustion zone might 
not characterize the entire combustion zone given the narrow angle of the PFTIR without 
making a well-mixed assumption of the combustion products. Here, we will attempt to 
characterize the measurement uncertainty given the data provided.   


Modeled Data 
The raw modeled data is obtained from our in-house Arches computational fluid dynamics 
code. Arches is a large eddy simulations (LES) combustion simulator that runs on distributed 
parallel computers. Arches solves equations of mass, momentum, and energy, including 
radiative transport, for single and multiphase combustion applications. Arches resolves a range 
of timescales capturing time dependent information as well as spatial information of the system 
of interest. A variety of combustion models are available in Arches. Here, we use the Rate 
Controlled Constrained Equilibrium (RCCE) model. RCCE resolves a global combustion rate 
that constrains a chemical equilibrium assumption allowing for combustion quenching to 
represented, which is crucial for computing combustion efficiency. A dynamic LES turbulence 
closure is used that uses local turbulent information to close the equation set. Various 

η ϕi
ppm ⋅ m

η



quantities of interest from Arches simulations are easily extracted, time averaged and reported 
for visualization or data reduction.

	 There are three major sources of uncertainty in the Arches simulations. These are 
uncertainties in the model or model parameters, numerical uncertainty arising from discrete 
representation of continuous equations, and uncertainty in the scenario parameters. Scenario 
parameters are those environmental related inputs required to construct a simulation. For 
example, variations in the wind speed, flare geometry, vent gas flow rates, steam flow rates, 
and so-on are typical examples that result in boundary condition uncertainty for the simulation.  
For the work presented here, we will assume that the simulations are of sufficiently fine 
resolution (O(1mm)) that the numerical error is small relative to the model and scenario 
uncertainty. The characterization of the model and scenario uncertainty is done in context of 
the BML method presented below.

	 The modeled combustion efficiency from Arches is obtained by shooting a line of sight 
through the time-dependent LES data. The target of the line of sight is held constant. Values of 
CO2, CO, and hydrocarbon are time-averaged along the line. This process is done to replicate 
the PFTIR instrument. For this virtual instrument, the position of the PFTIR camera and view 
angle is set independently as the operator of the real instrument would do. Because the virtual 
instrumentation has no feedback on the simulation results, several view angles can be explored 
as an independent, after-the-fact parameter without increasing the cost of the simulation. This 
allows us to explore the uncertainty of the PFTIR target in the simulation. For any of the virtual 
lines-of-sight, various windows of time-averaging are explored to ensure statistical steady-
state.

	 Geometric details of the SKEC flare head were scarce. The simulated version was 
constructed using photos, online promotional information, and flow area information reported 
with the PFTIR data. Wind data including speed and direction was collected during the test but 
it was uncertain where the information was collected relative to the flare stacks. The average 
windspeed and direction were used for the simulated boundary conditions. These were held 
constant though the simulation. Other important boundary conditions, such as the vent gas 
conditions, flow rates and steam flow rates were provided in the report. 

	 Given that both the simulated and measured data sources have sources of uncertainty, 
it is our hope that the combination of the data together as valid data sources results in a net 
information gain more so than any data source on its own. This process is done using Bayes 
Theorem and is discussed next.




Bayesian Machine Learning 


In our analysis of the data, we use the following basis: 

• Our LES model is a function which maps a set of inputs, � , to an output, � . So, � .

• The �  vector is potentially large, containing model parameters, environmental scenario 

parameters, and numerical parameters, all of which have uncertainty.

• The observed data also maps a set of conditions to an output, � . The input parameter 

space, � , for the measured output is also large, with many parameters being unmeasured or 
unknown. These parameters also have uncertainty.


• For both �  and � , the uncertainty in the input parameters maps to uncertainty in the output. 

• The difference between the two, � , is uncertainty and is characterized by a 

distribution.

It is upon this framework which we build the Bayesian Machine Learning (BML) approach. 	 

	 BML operates on the principle of using Bayes Theorem which, mathematically, is stated 
as,


x ym ym = f (x)
x

ye
xe
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ε = ym − ye



�      (2)


where �  represents a distribution, �  are the input parameters, and �  are the observations. In 
words, the left hand side of the equation is distribution of the input parameters conditioned on 
the data and is called the posterior. On the right is the prior uncertainty distribution of the 
inputs (� ) multiplied with the data conditioned on those inputs ( � ). This last function is 
typically called the likelihood function. In both the construction of the likelihood function and 
so-called predictive posterior, a relationship is needed to map inputs (� ) to the output 
observables (� ). The likelihood construction also requires observed data with a prior uncertainty 
distribution. The relationship that maps inputs to outputs is the physical model of the system, 
which can come in any form with as much or as little complexity as the system demands. Once 
the posterior is obtained, one can use it to predict new values of � . This prediction is called the 
predictive posterior and, once obtained, contains the updated state of knowledge using all 
available data - both modeled and observed. It is worth pointing out that often times the model 
may be able to map other information of interest that aren’t easily measured or observed. Thus, 
the predictive posterior can potentially provide more accurate information on � , but it may also 
provide additional information to further evaluate the state of the system and draw inference 
from the physical model. 

	 In the case of the steamed flare, there is one quantity of interest examined here; the 
combustion efficiency. The inputs, � , are many. Here, we employ the sparsity-of-effects 
principle, which states that the system is typically dominated by a small subset of lower-order 
interactions of the input space. This eases the curse of dimensionality, which can rapidly 
increase the cost of application of BML due to the cost of the LES model. Thus, to keep the 
scope of this project down, we examine three important input parameters that we have 
deemed significant; The windspeed and direction, the steam flow rate (or net heating value of 
the combustion zone), and the position of the PFTIR target. Each input is characterized by a 
distribution, which is an assumed prior. We also assume that the experimental PFTIR data is 
also normally distributed.

	 As mentioned, the typical cost of one LES simulation is not insignificant. Given one set 
of inputs, a single simulation runs for about three days on roughly 400 cores. To sample the 
input space with enough points to construct a good representation of the posterior would be 
prohibitively expensive. As a result, we carefully select a range of input parameters, evaluate 
the full LES model, and finally fit a surface to the simulation output. This response surface then 
serves as a surrogate model for the full LES simulation and can be sampled at a high rate with 
very low cost (e.g., fractions of seconds for one sample).

	 Once the posterior predictive is obtained, additional information may be extracted from 
the physical model. For example, an integrated combustion efficiency across a volume is 
impossible to obtain in the physical system, but easily computed from the model form. Given 
that the measured data has informed model through the input distributions, the inferred 
integrated combustion efficiency can be obtained with an uncertainty distribution. This could 
extend to other quantities that the LES model could capture. With additional collection of 
measured data, the posterior and predictive posterior would be updated. The process just 
described can be extended to one that provides real-time data for evaluation and control of an 
operating flare system. Such a system would be continuously updated with current, measured 
data, which could improve the accuracy of the controller over time. 
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Results


Sample Simulation 
Here we discuss an example of a typical LES simulation of the SKEC flare. 

	 The geometry of the flare head was constructed using information from the Marathon 
report and with whatever little information could be gleaned from online and openly available 
sources. Figure 1 shows the comparison of a photo of the actual flare head with the 
reconstructed flare head used in the LES. 

	 The Arches simulations are based on the SN1 (as titled in the report) test series. The 
primary objective of the experiments were to determine the performance envelope of the 
burner at the minimum flow rate (very high turndown). This scenario tests the performance of 
the flare at a point of near flame extinction. The minimum flow rating for this particular tip is 
approximately 4 ft/sec. 100 % Tulsa natural gas was used as the vent gas. The steam flow rate 
was adjusted to vary the net heating value of the combustion zone (NHVcz), computed as,


�       (3)


where �  is the volumetric flow rate of the vent gas (vg) and steam (s). In this example, the 
NHVcz was around 100 BTU/scf given the flow rate conditions.

	 Experimental measurements were obtained using PFTIR. The PFTIR camera was aimed 
at a location about one flame length downstream from the combustion zone. The line-of-sight 
measurement returns signal from which the relative amounts of various species can be 
deduced. Specifically, using the � , � , and unburnt hydrocarbon signal a combustion 
efficiency is computed as the ratio of the �  to the sum � +� +unburnt hydrocarbon. As 
the PFTIR is a line-of-sight measurement technique, naturally the value is dependent on several 
variables, such as the location of the camera, the positioning of the target, and environmental 
conditions affecting the plume of the flare to name a few. Alignment of the camera and 
positioning of the target becomes critical in the final combustion efficiency signal. For example, 
for test SN1, several measurements were obtained across a range of cross winds and cross 
wind directions for constant vent gas to assist ratios. These efficiencies are shown in Figure 2. 
Failed measurements are indicated with a zero combustion efficiency reading. Note that the 

NHVCZ =
Qvg ⋅ NHVvg

Qvg + Qs

Q

CO2 CO
CO2 CO2 CO

Figure 1: Image of the flare actual flare head (left) and the 
reconstructed geometry used in the LES simulation (right). 



range of observed efficiencies range from a low of 14% to as high as 97%. Excluding data 
below 50%, an average combustion efficiency is computed as 90%. 

	 Using the CAD mockup as described above, Arches LES simulations were performed 
and combustion efficiencies were obtained for a wind speed of 10mph. Simulations were run 
on about 320 processors and consumed about 23,000 CPUhrs/case. Combustion efficiencies 
were obtained by extracting time-averaged data along lines of sight downstream from the flare. 
An example is shown in Figure 3, where the temperature field at a specific time has been 
volume rendered and a line of sight is shown by the red cylinder. 

	 The simulated line-of-sight combustion efficiency varies as a function of elevation. This 
is demonstrated in Figures 4 and 5. Figure 4 shows the combustion efficiency as a function of 
line-of-sight elevation with the average line-of-sight temperature reading. For reference, Figure 
5 is a two-dimensional contour plot of the combustion efficiency at the same downstream 
position. The simulation appears to be predicting values within the range of the experimentally 
measured data for the same wind conditions. 


Figure 2: Measured combustion efficiency percentages as a 
function of the observed wind speed. Values at zero indicate 
failed readings.



Figure 3: Volume rendered temperature with the red cylinder 
showing an example of the ID line-of-sight extraction from the 
LES data. 

Figure 4: Combustion efficiency (red line) and temperature (black 
line) line of sight LES predictions at a location downstream from 
the flare.









Instrument Modeling Results - Validation with UQ 
An instrument model (IM) of the PFTIR physical instrument is constructed with three inputs. 
These inputs are the physical location of the PFTIR instrument relative to the flare, the 
environmental wind direction, and the location of the target for the PFTIR instrument. Note that 
several other parameters could be included, including calibration parameters. However, these 
were omitted to keep the scope limited. 

	 Each input to the IM representation of the PFTIR instrument has a measure of 
uncertainty. The uncertainty is characterized as a distribution and an assumed distribution on 
each parameter is assigned. The assumed distribution is the prior distribution and is made with 
a best engineering guess. Given a single LES simulation at a specific wind speed condition and 
steam flow rate, the averaged � , � , and unburnt hydrocarbon data is sampled over a 
range of target locations and wind directions. From this data, combustion efficiencies are 
computed. This maps the input variables to a response in combustion efficiency. From this 
response, a function is fit using Gaussian Processes. The fit function will then serve as a 
surrogate to the data sampling. The surrogate is required to speed up the sampling of the 
distributions in the construction of the likelihood estimation. 


CO2 CO

Figure 5: A two-dimensional filled contour plot of the combustion 
efficiency and line contour plot of temperature at the same 
downstream location.  



	 With the assumption on the priors and a method for computing the likelihood, we can 
proceed with computing the posterior parameter distributions. Recall that these parameter 
distributions represent the informed parameters because they used the measured data to 
arrive at their updated state. 

	 A total of 20 separate LES simulations were performed at different windspeed/steam 
flow rate conditions. Using one of the runs, we perform the BML method to arrive at the 
posterior distributions and the predictive posterior combustion efficiency. This can be done for 
all cases. Here, we show an example of two of the 20 cases. 

	 Figure 6 shows the IM targeting superimposed over an instantaneous and time 
averaged LES temperature field. The procedure for picking the target was to time average the 
temperature field, and then place the target near the end of the combustion zone, not unlike 
the technique used in the actual experiment. Once the target was placed, it was then varied 
about that point to generate a sample set from which the surrogate model could be 
constructed. 

	 After the targeting samples were chosen, the PFTIR IM was placed at an observation 
point. This positioning is estimate, but Google satellite imagery and distance estimates were 
used while cross referencing the qualitative reporting from the Marathon Data Report on the 
actual PFTIR placement for the experiments. After the placement of the virtual instrument, the 
instrument was then rotated about the flare stack to mimic the effect of the changing wind 
direction. This approach allows us to sample a wide range of wind direction angles without 
rerunning an LES simulation. In other words, the LES flare stays in a fixed reference frame. For 
a typical sampling, the angles ran from -150 to +150 degrees relative to the initial positioning of 
the PFTIR placement. Figure 7 shows an example of such sampling with the combination of 
the variation in the target position for a single case. 





Figure 6: Instantaneous (left) and time-averaged (right) temperature plots 
with the PFTIR instrument model target samples shown with pink markers. 



Although it wasn’t explicitly reported with the data, an assumption made here is that the target 
positioning in the experiment is held constant throughout the data acquisition period and is 
likewise held constant in the IM. If our assumption is incorrect and if the targeting was adjusted 
during the experiment, we would expect this to generate a bias in the analysis. 

	 The results of the IM are now discussed for two experimental conditions; a case with a 
moderate wind/low steam rate (Condition 3 from the report) and moderate wind/high steam 
rate (Condition 6 from the report). For each individual case, the steam flow rate and crosswind 
speed condition is held constant at the experimentally reported mean condition. Once the LES 
case is complete, the data is post-processed to include variation of the IM parameters of wind 
direction target placement. Note that the target placement is parameterized by a downstream 
location and an elevation above the flare head. A total of 100 samples are taken varying the IM 
parameters using a Latin Hypercube sampling technique. After the sampling, a response 
surface is generated from the data. This response surface is then passed into the BML 
algorithm to produce posteriors from the priors distributions. For the BML algorithm, we 
choose four parameters: 

• The variation of the angle of the wind, � 

• The downstream target location relative to a mean, � 

• The target elevation relative to a mean, � 

• All other sources of uncertainty, � 

Regarding � , this parameter represents a measure of the variation on the experimental and 
modeled data and represents uncertainty from unaccounted sources. When �  is quantified in 
the posterior, it serves as a representation of the standard deviation of the uncertainty about 
the measured point when the modeled and measured data are combined through the BML 
algorithm. Also, regarding the target position, because the target is a spatial location we center 
and normalize this data so that it represents a relative distance from some given target. This is 
done by simply subtracting the mean of all values from any specific value and also scaling it by 
the mean value.
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Figure 7: Example of the PFTIR instrument model sampling showing the variation in 
the targeting position and the wind direction effect. The flare stack is indicated with 
the green bar. The intersecting targets are shown with red dots. The starting and 
stoping locations of the PFTIR ray are indicated with black dots while the ray path is 
shown with the dashed blue line. 



	 Each of the four IM parameters are characterized with a prior distribution. Ideally, the 
prior distribution should be realistic and use the best state of knowledge for each parameter. 
For the variance in the wind, we use a lognormal distribution. For the target location, we use a 
normal distribution, and for �  we use a Jeffrey’s prior, which is an uninformed prior. These 
distributions are fed into the BML algorithm resulting in a set of posteriors on the parameter 
space. Since this is a four-dimensional space, we show the joint and marginal distributions in 
Figure 8. We note that the �  value for Condition 3 is more than 2.5 times less than that for 
Condition 6. It appears from the data that Condition 6 experienced the most variability of any 
of the six conditions. This is demonstrated in Figure 9 where we have plotted the 95% 
confidence interval on the raw experimental data after removing missing entries and reported 
values of zero combustion efficiency.   

	 Upon collection of the marginals from the BML posteriors, we then use this information 
in a forward manner through the physics or surrogate model to predict values of combustion 
efficiency at various conditions. Here, the logical choice for the physics model is the surrogate 
model is used to predict combustion efficiency given a range of inputs. Because we are dealing 
with probability distributions, we can analyze the data in the form of distributions or simply 
moments of the distribution. Figure 10 shows a sampling of the distributions for a few points in 
the measurement space to illustrate how the distributions compare from the measured data 
distribution (assumed normal with mean as the measured point and � ) and the predicted 
distributions. Note that efficiencies greater than one can be eliminated with a proper variable 
transformation which was not done here.


Conclusion

 


In this paper we have outlined an approach for pairing PFTIR data with advanced LES 
simulation to move beyond the usual model validation viewgraph norms that are typically 
presented. In this approach, the view of data sources is more encompassing, in that all data 
sources are viewed as potentially valuable as long as they can be characterized with 
uncertainty distributions. The aim is to combine these methods in a Bayesian Machine 
Learning framework to promote learning on all data sources. This is accomplished using Bayes 
law. With the expensive LES simulations, we also employ response surface modeling to serve 
as a surrogate to the expensive LES once the input parameter space has been sampled to a 
good degree. The end result of this analysis is (potentially) an increase in data learning of all 
sources. Additionally, because of the use of a physics-based model, other unmeasured (or not 
easily measured) quantities can be inferred. The entire methodology can be packaged into 
code that rapidly provides feedback in a matter of seconds when the response surface is used. 
Such a form would be useful for analysis and control of the flare in real-time.

	 Work is underway to expand the parameter space using the BML approach. This 
expanded parameter will result in an instrument model that could take online data for the 
steam flow rate, wind speed, and wind direction, and produce a line of sight combustion 
efficiency. It will also allow inference of other modeled parameters that the LES could provide, 
such as temperature predictions, heat flux measurements, and integrated combustion 
efficiency over a volume. This model, sometimes referred to as a digital twin, could be used for 
control, operational insight, or design of flares. 

	 The instrument developed here executes in the matter of seconds and could provide 
real-time feedback to flare operations. Furthermore, additional gathered data from PFTIR 
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measurements could update the posterior distributions through the BML algorithm and 
propagate new measurements downstream to the IM through the posterior predictive. The 
propagation occurs in minutes. If flare operations go beyond the bounds explored by the LES 

Figure 8: The posterior joint and marginal distributions for Conditions 3 
(top, moderate wind/low steam) and Condition 6 (bottom, moderate 
wind/high steam). Shown on the plot are the numerical values of of the 
15th, 50th, and 85th quartiles. 



simulations and included in the response surface model, then new LES simulations should be  
added to expand the parameter space. A typical LES simulation of the flare examined require 
about 2-3 days on roughly 1.5K computing cores.    





Figure 9: A plot of the 95% confidence interval from the raw measured data 
used to represent the relative variations in the combustion efficiency per 
case. The mean values are shown with the white dots. 



Figure 10: Distribution predictions of measured (gray) vs. predicted (green) 
values of combustion efficiency for Conditions 3 (top) and 6 (bottom). Note 
that Condition 6, Replicate 1 had only four valid readings of CE. 
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